A Closed Character Formula for Symmetric Powers of Irreducible Representations
نویسنده
چکیده
We prove a closed character formula for the symmetric powers SNV (λ ) of a fixed irreducible representation V (λ ) of a complex semi-simple Lie algebra g by means of partial fraction decomposition. The formula involves rational functions in rank of g many variables which are easier to determine than the weight multiplicities of SNV (λ ) themselves. We compute those rational functions in some interesting cases. Furthermore, we introduce a residuetype generating function for the weight multiplicities of SNV (λ ) and explain the connections between our character formula, vector partition functions and iterated partial fraction decomposition. Résumé. Nous établissons une formule fermée pour le caractère de la puissance symétrique SNV (λ ) d’une représentation irréductible V (λ ) d’une algèbre de Lie semi-simple complexe g, en utilisant des décompositions en fractions partielles. Cette formule exprime ce caractère en termes de fractions rationnelles en r variables, où r est le rang de g. Ces fractions sont plus faciles à déterminer que les multiplicités de la décomposition de SNV (λ ) elles-mêmes. Nous calculons ces fonctions rationnelles dans quelques cas intéressants. Nous introduisons par ailleurs une fonction génératrice de type résidu pour les multiplicités de SNV (λ ) et relions notre formule aux fonctions de partitions vectorielles et aux décompositions itérées en fractions partielles.
منابع مشابه
Monomial Irreducible sln-Modules
In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.
متن کاملCharacter and Dimension Formulae for Finite Dimensional Irreducible Representations of the General Linear Superalgebra
The generalized Kazhdan-Lusztig polynomials for the finite dimensional irreducible representations of the general linear superalgebra are computed explicitly. The result is applied to prove a conjectural character formula put forward by van der Jeugt et al in the late 80s. We simplify this character formula to cast it into the Kac-Weyl form, and derive from it a closed formula for the dimension...
متن کاملRecovering Modular Forms and Representations from Tensor and Symmetric Powers
We consider the problem of determining the relationship between two representations knowing that some tensor or symmetric power of the original represetations coincide. Combined with refinements of strong multiplicity one, we show that if the characters of some tensor or symmetric powers of two absolutely irreducible l-adic representation with the algebraic envelope of the image being connected...
متن کاملAn explicit formula for the characters of the symmetric group
The characters of the irreducible representations of the symmetric group play an important role in many areas of mathematics. However, since the early work of Frobenius [5] in 1900, no explicit formula was found for them. The characters of the symmetric group were computed through various recursive algorithms, but explicit formulas were only known for about ten particular cases [5, 9]. The purp...
متن کاملWeyl’s Character Formula for Representations of Semisimple Lie Algebras
Weyl’s character formula is a useful tool in understanding the structure of irreducible representations of semisimple Lie algebras. Even more important than the character formula itself is a corollary, the Weyl dimension formula, which gives a fairly simple expression for the total dimension of the representation in terms of the root system of the Lie algebra. Although the results discussed are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010